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Cross Track Error and Proportional Turning Rate Guidance of
Marine Vehicles

Fotis A. Papoulias’

The problem of turning rate guidance and control of marine vehicles is considered. Feedback with feed-
forward rudder control is used to deliver a specified turning rate for the vehicle, while a guidance law
is employed to create the necessary sequence of turning rate commands which would allow conver-
gence to a desired geographical path. Two different guidance schemes are presented and analyzed,
namely, cross track error and proportional turning rate guidance. Stability conditions are computed ex-
plicitly, while nonlinear analysis techniques illustrate the significance of design parameters on the final
system response that cannot be inferred from linearized stability results.

Introduction

SMALL UNMANNED marine vehicles suitable for use in both
naval and commercial operations have unique mission re-
quirements and dynamic response characteristics. In partic-
ular, they are required to be highly maneuverable and very
responsive as they operate in obstacle-avoidance and object-
recognition scenarios. The need, therefore, arises to main-
tain accurate path-keeping in confined spaces and shallow
waters under the influence of steady- and time-varying ex-
ternal forces. The primary vehicle guidance system is based
on heading or turning rate commands that are generated
based on a specified geographical sequence of desired way
points. Speed commands can be generated by incorporating
temporal attributes to the way points. These guidance com-
mands are then passed to the vehicle controller which at-
tempts to deliver the commanded heading and/or heading
rate of change by an appropriate use of the vehicle control
surfaces (Healey et al 1990). Unlike open sea operations, for
vehicle missions in coastal areas and confined waters, the
way point sequence must be very dense so that satisfactory
path accuracy is maintained. One efficient way of maneu-
vering through a given way point sequence is by using a
line-of-sight guidance law which commands a heading angle
that is directly related to the line-of-sight angle between the
vehicle position and a desired destination point. The vehicle
controller is then an orientation control law which delivers
the commanded heading. Previous studies (Papoulias 1991,
1992), have demonstrated that this scheme is guaranteed
stable only if the way point separation is above some critical
value. This conclusion is true regardless of the particular
form of the line-of-sight guidance or the heading control law
used. Similar results hold for vertical plane guidance (Pa-
poulias 19921,  although additional instabilities are possible
here due to the existence of the metacentric height. In this
work we analyze the turning rate guidance and control prob-
lem in the horizontal plane, where the guidance law de-
mands a specific yaw rate response from the controller. A
linear state feedback with a feedforward term (Friedland
1986) control law is used, while two different guidance
schemes are considered. The first, a cross track error guid-
ance, is very popular in land-based robotic applications
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(Kanayama et al 1990),  and the second, a proportional guid-
ance law, is predominantly used in aerospace applications
and interception/evasion problems (Brainin & McGhee  1968).
Stability analysis is performed and bifurcation theory tech-
niques (Hassard & Wan 1978, Guckenheimer & Holmes 19831
are utilized in order to assess the dynamics of the system
upon initial loss of stability. All computations are performed
for the Naval Postgraduate School autonomous test-bed ve-
hicle for which a complete set of geometric properties and
hydrodynamic characteristics is available (Bahrke 19921.
Unless otherwise mentioned, all results are presented in
standard dimensionless form with respect to the vehicle length
P = 2.3 m and nominal forward speed u = 0.6 m/s, which
corresponds to a Froude number of 0.13. At these conditions,
the vehicle is very maneuverable due to a total of four rud-
der surfaces with a maximum turning rate of about 9 deg
per second and a turning radius of less than two vehicle
lengths.

1. Problem formulation

In this section we present the vehicle equations of motion
in the horizontal plane. The control law is based on the dy-
namic equations in sway and yaw, whereas guidance is
achieved through the use of the kinematic relations.

Equations of motion
Restricting our attention to the horizontal plane, the

mathematical model consists of the nonlinear sway and yaw
equations of motion. In a moving coordinate frame fixed at
the vehicle’s geometrical center (see Fig. 11, the maneuver-
ing equations of motion are

mid + ur + xCf) = Y,r’ + Y,d + Y,ur + Y,uv + Y&3

-0.5pCDJh(S)(u  + Sr)lu + SrldS (1)

I,? + mxG(ti  t ur) = N,f + N,ti t N,ur t N,uu + N,&%

-0.5pColh(S)(u  + Sr)lu + 5r15  d5 (2)

where u is the vehicle forward speed, v and rare the relative
sway and yaw velocities of the moving vehicle with respect
to the water, and the rest of the symbols are explained in
the Nomenclature. Equations (1) and (2) can be written as
two first-order decoupled equations in the form

d = aiiuu  t q2ur + b,u”S  + d,(u, r-1 (3)

I: = azluu  t aY2ur + b2u26 t d,(u, r-1 (4)

JUNE 1994 0022-4502/94/3802-0123$00.45/O JOURNALOFSHlPRESEARCH 123



Y

7
v u

+

~

Y

*

d
X

Fig. 1 Vehicle geometry and definitions of symbols

where the coefficients ad, bj are functions of the hydrody-
namic derivatives, geometric properties, and rudder coeff-
cients. The terms d&u,  r) and d,(u, r) represent the contri-
butions from the quadratic drag terms in (1) and (2). In the
above form, the equations of motion are valid for both small
and large drift angles. Drag related terms are relatively small
for regular cruising operations, u + (u + xr), and the vehicle
response is, therefore, predominantly linear. For a vehicle
operating near hover, u 4 (v + xr), the quadratic drag forces
dominate the response. The surge velocity u is clearly af-
fected during the turn due to the added drag in turning. For
the purposes of this study it is assumed to be constant. This
is a valid approximation since experimental experience has
shown that the propulsion control law is, in general, capable
of keeping the forward speed relatively constant at the com-
manded value (Bahrke 19921.

Feedback control
A linear rudder feedback control law based on the linear-

ized set of equations (3) and (41,

has the form

d = alluu + a12ur  + blu”6

r’ = azluu + az2ur + b2u2S

(5)

(6)

6 = k,,u + k,r (7)

where k,, k, are the feedback gains. By substituting (7) into
(5) and (6) we can find the closed loop characteristic equa-
tion

where

X2 + Aih + A, = 0 (8)

Ai = -[all + uz2  + (blk, + b2k,)ulu,  and

AZ = [a11a22  - u12az1  + (b,a22  - b2a&k,
+ (bzall - bla21)uk,lu2.

If the desired characteristic equation is

x2 + ci,h + IX.2  = 0 (9)

we can equate the coefficients of (8) and (9) and get the fol-
lowing system of linear equations

k,.b1u2  + k,b& = -aI ~ (aI1 + a22)u

k,(a22b1  - a12b2h3  + k,hbz  - a21bl)u3
= a2 ~ (a11a22  - a12a21V

to be solved for the gains k, and k,.
The coefficients ol, o2 of the desired characteristic equa-

tion (9) can be specified according to standard second-order
system transient response specifications (Friedland 19921. In

Nomenclature

a, = open loop state coefficients
in U, r model

A = linearized system matrix
b, = open loop rudder coeffr-

cients in u, r model
Co = drag coefficient

d = proportional guidance law
preview distance

I, = vehicle mass moment of in-
ertia

T = matrix of eigenvectors of A
T,, = zeroth-order approximation

of limit cycle period
Tc = control law time constant
T, = guidance law time constant

u = vehicle forward speed
u = sway velocity

uO = ratio of steady-state sway
velocity to steady-state
turning rate

X = cubic stability coefficient x = state variables vector
k,, k, = control law feedback gains xc = body-fixed coordinate of ve-

k, or k, = control law feedforward gain hicle center of gravity
kJr, k, = cross track error guidance y = deviation off commanded

gains path
k,,, ku = proportional guidance gains

m = vehicle mass
N = yaw moment

N, = derivative of N with respect
to a

Y = sway force
Y, = derivative of Y with respect

to a
z = state variables vector in ca-

nonical form
PAH = Poincare-Andronov-Hopf bi-

furcation
zl, .zp = critical variables of z
z3, z4 = stable coordinates of z

r = yaw rate
r, = commanded yaw rate
R = polar coordinate of trans-

formed reduced system
t = time

Greek symbols

(Y, = coefftcients  of desired con-
trol characteristic equa-
tion
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01’  = derivative of o with respect
to d evaluated at d,,,t

pL = coefficients  of desired guid-
ance characteristic equa-
tion

6 = rudder angle
6,., = saturation level of rudder

angle
E = difference between a bifur-

cation parameter and its
critical value

8 = polar coordinate of trans-
formed reduced system

I) = vehicle heading angle
CT  = line-of-sight angle

0, = positive imaginary part of
critical pair of eigenval-
ues evaluated at critical
point

w’ = derivative of w with respect
to bifurcation parameter
evaluated at critical value
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this work we use the controller time constant, T,, as the
parameter. Then the desired characteristic equation is

( !A+;
2

C

=0 orX’+$X+$=O
C C

and comparing with (9) we see that

(10)

Specification of a controller time constant Tc then deter-
mines the feedback gains k,, k, uniquely.

Feedforward control

The control law (7) guarantees stability of u = r = 0 of (5)
and (6), in other words, straight line motion at an arbitrary
heading. When the commanded angular velocity r, is non-
zero the control law is slightly modified to

6 = K,u  + Iz,(r  - rJ + k,r, (11)

where k, is the feedforward gain. The feedback gains k,, k,
remain the same since the drag terms d&u, r), d,(u,  r) are
small and, therefore, the linearized dynamics of (3) and (4)
around r, do not differ significantly from (5) and (6). The
feedforward gain k, is computed based on steady-state ac-
curacy requirements. At steady state, equations (5) and (6)
yield

ha22 - ha12
U=

ball - ha21
r,, 6 = a2lal2  - mh2

(b2aIl  - bla2du
(12)

Substituting (12) into (11) and requiring that r = r, at steady
state we can solve for k, and finally write the control law
(11) in the form

Analogously to the control law design, if the time constant
of the guidance law is selected to be Tc, then (20) results in

where

6 = k,u + k,r - kOaZrc (13)
k,= -$ k,= -A

G G

1
k,, =

(bpall - b,azlh3
(14)

With the above feedforward gain the control law is complete.
It should be mentioned that all gains k,, k,, k, depend ex-
plicitly on the forward speed u and are, therefore, continu-
ously updated every time a different forward speed is com-
manded.

Selection of TG then determines k, and k, uniquely.
Although this development followed the small angle ap-

nroximation sin $ = I), it is not difficult to see that negative
values of k, ‘and k, guarantee stability of the nonlinear SYS-
tern (15)  and (16). The associated total energy of the system
is

E(,j,,  ,J,)  = f $ - k,u(l - cos $1

The feedforward gain k. computed from (14) ensures that
the steady-state turning rate r equals the commanded value
r, for the linear system (5) and (6). In general, we can see
from (3) and (4) that at steady state r # r, unless d, = d, =
0. As the controller time constant Tc is decreased, the con-
trol law becomes tighter and the steady-state error Ir - r,l
will be smaller. In practice, the above steady-state error could
not be made zero due to uncertainties in the vehicle hydro-
dynamic description and other unmodeled dynamics. One way
to ensure steady-state accuracy in r would be to abandon the
use of the feedforward gain k, and to introduce integral con-
trol. This approach is not favored since it results, in general,
in oscillatory transient response (Friedland 1992). The other
alternative is to use a time varying r, such that convergence
to a specified geographical path is achieved. This is accom-
plished through the introduction of the guidance law pre-
sented in the following sections.

which can be viewed as the sum of kinetic and potential en-
ergy. Using (15) and (17) this is written as

~(9, y) = f (k,+ + k,yY - k,u(l - ~0s 4~)

We note that E(+, y) provides a Lyapunov function candidate
for (15) and (16) since E(0,  0) = 0 at the unique equilibrium
(+, yl = (0, 01 and E(I), y) > 0 for (9, y) f (0, 01, because k,
< 0. Moreover, we have

&=!$+$.t$

= l(k,+ + k&k,  - k,u sin 91(k,$  + Iz,y)

Cross track error guidance

+ (k,$ + k,y) k,u sin IJI

= k6(kb$  + kg,”

In order to achieve path control to a commanded route in
the horizontal plane, the commanded turning rate r, must

which, since k, < 0, is negative semi-definite. Therefore,
Lyapunov’s theorem guarantees stability of the nonlinear

be appropriately selected. This constitutes the guidance law system (15) and (16) (Guckenheimer & Holmes 19831.

design. Without loss in generality we can assume that the
commanded path is a straight line. This is not a very re-
strictive assumption since every smooth path can be discre-
tized into a series of straight-line segments as accurately as
desired.

The guidance law is based solely on kinematics, whereas
vehicle dynamics are handled by the rudder control law.
Guidance law development is therefore based on

$ = r, (15)

3 = u sin * (161

where r, is the commanded turning rate and the lateral ve-
locity v is assumed to be zero in (16). Cross track error guid-
ance is achieved by

r, = k+J, + k,y (17)

The closed loop characteristic equation of (15),  (161, and (17)
is

x2 - k,h - k,u = 0 (18)

If the desired characteristic equation is

A2 + p,x + pz = 0 (191

the guidance law gains k,, k, are obtained by equating the
coefficients of (18) and (19)
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Proportional guidance

Proportional guidance with an integral term (Brainin  &
McGhee  1968) is achieved by

r, = ki,ti + k,(o - *) (22)

In this fashion, the commanded turning rate attempts to close
in on the difference between the vehicle heading + and the
line-of-sight angle cr. The additional term which is propor-
tional to the line-of-sight rate of change ir adds damping in
cases where o changes rapidly in time such as obstacle-
avoidance, object-recognition, or terrain-following tasks. The
line-of-sight angle is defined as the angle between the ve-
hicle longitudinal axis and a target point located ahead of
the vehicle on the nominal path at a constant preview dis-
tance d, as shown in Fig. 1. For the straight-line nominal
path case we have

The proportional guidance characteristic equation is ob-
tained from (151, (161,  (221,  and (23) as

(24)

and by comparing coefficients of (19) and (24)  we get

k = !@
<r

k_  = Pldu  - Pzd”
, u (25)

U u2

where pl, pZ are explicit functions of the guidance law time
constant To, as before.

2. Stability conditions

The turning rate control law developed in the foregoing
section was designed to guarantee convergence to a constant
commanded value of r,., as well as to a series of step changes
in r,. The controller time constant Tc is inversely related to
the bandwidth of the closed-loop (u, r) system (Friedland 1986)
and this means that progressively smaller Tc values will en-
sure following of a time-varying commanded value r,(t) with
smaller steady-state error. The common characteristic of both
cross track error and proportional guidance laws, however,
is that the commanded value r,. is a function of the vehicle
state. This generates an additional loop encompassing the
closed-loop steering dynamics and unless proper conditions
are met, this outer loop may have a destabilizing effect. The
purpose of this section is to establish these conditions ex-
plicitly so that stability of the combined guidance and con-
trol scheme is guaranteed. In particular, we seek those (Tc,
T,) combinations that result in motion stability. From the
design point of view this is needed for the following reason:
Smaller values of (Tc, TG) result in a very responsive guid-
ance and control law with excellent path-keeping capabili-
ties. On the other hand, there is a limit on the values of CT,,
T,)  based on sensor noise. Therefore, in practice one should
select the smallest possible (Tc, TG)  combination that guar-
antees stability as established through the analysis of this
sections and Section 3.

Cross track error guidance

The complete system is given by the vehicle dynamic and
kinematic equations

JI=r (26)

ti = aiiuu  + alzur + blu2S (27)

I: = aZluv  + azz.ur + b2u26 (28)

j = u sin (I + u cos * (29)

and the combined guidance and control law

6 = k,v + k,r - koazrc

= k,v + k,r - k,a,(k,$ + kg) (30)

In a compact vector notation the linearized form of the sys-
tern is written as

x = Ax, x = 14,  u, r, ylT (311

where the linearization is performed around the nominal
equilibrium state $ = v = r = y = 0. Motion stability is then
established by the eigenvalues of A: if all have negative real
parts the nominal straight-line motion is dynamically sta-
ble, while if at least one eigenvalue of A is positive, stability
is lost. Writing out the characteristic equation of (31)  we get

h4+Bh3+CA2+Dh+E=0

where

B = ctl

C = 0[2 - (b& + b&$)uk,a,

D = a2P1  + 442

E = a&

and

(32)

If we apply Routh’s  criterion to the quartic (32) we find
the following two active conditions for stability

BCD - B’E - D2 > 0, and (33)

D>O (34)

Explicit evaluation of conditions (33) and (34) results in

Tc <
2[T; - (b, + 2b2TGu)uk<,](2TG  + cl,)

4T; + (2TG + dJ2
(35)

TG > id, (36)

In our problem, condition (36) is always satisfied, and, there-
fore, the only active stability condition is (35) which de-
mands that for a given guidance time constant TG,  the con-
troller time constant Tc must be less than a computable
critical threshold. Since smaller values of Tc correspond to
a tighter control law, this result is physically realizable in
the sense that the control law must be sufficiently more re-
sponsive than the guidance law to guarantee path stability.

A plot of our stability condition (35) is presented in Fig.
2, where all variables are given in dimensionless form with
respect to the vehicle length and forward speed. For large
values of Tc the asymptotic form of (35) is Tc < 0.5TG +
con&, or any increase in the guidance law responsiveness
must be accompanied by double the increase in the autopilot
responsiveness.

If condition (35) is not satisfied, one pair of complex con-
jugate roots of (32) possesses positive real parts and as a
result the response of the vehicle is oscillatory. The zeroth-
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Fig. 2 Cross track error guidance: critical value of Tc versus TG

order approximation for the period of the oscillatory re-
sponse is

WO

where w0 is the absolute value of the imaginary part of the
critical pair of eigenvalues. The above stability analysis re-
sults are confirmed by the time simulation of Fig. 3, for TG
= 0.5 and two different values of Tc. For this value of TG
the critical value of Tc is 0.87 and equation (37) predicts a
period of 3.6 dimensionless seconds, which is close to the nu-
merical integration results observed in the figure. As Tc is
decreased below its critical value, stability of straight-line
motion is guaranteed. The time simulations of Fig. 4 present
a slightly different picture, however. Here TG = 0.25 and the
critical Tc = 0.6925. For Tc = 0.7 a large-amplitude periodic
motion is developing, unlike the case of Fig. 3 where the
periodic solution is concentrated in the vicinity of the nom-
inal equilibrium. The period of this periodic solution is sig-
nificantly larger than the value of T,, = 2 predicted by (37).
Furthermore, for Tc = 0.4 < 0.6925 it appears that conver-
gence to the nominal equilibrium is guaranteed only for ini-
tial conditions that are located very close to equilibrium. The

._
0 2 4 6 8 1 0 1 2 1 4 16 12
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Fig. 3 Cross track error guidance: simulahon  results for TG  = 0.5 and two
different values of T,
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Fig. 4 Cross track error guidance: simulation results for TG  = 0.25 and IWO

different values of Tc

above difference in the response between the two cases, TG
= 0.5 and TG = 0.25, cannot be predicted by our stability
analysis so far, and is the subject of studies performed in
Section 3.

Significance of feedforward control

At steady state, equations (26-29) yield IJ = v = r = 6 =
0, and equation (30) y = 0. This is true regardless of any
hydrodynamic modeling inaccuracies or the value of the
feedforward term K0 in the control law. It appears then that
the guidance law ensures steady-state accuracy without the
need for the feedforward term k, in the control law (11). Al-
though this is a valid statement as far as steady-state ac-
curacy is concerned, its effect on the stability of the com-
bined guidance and control scheme needs to be investigated.
To do this we set k, = 0 in (11) and we form the new lin-
earized system matrix as in (31). The characteristic equation
takes the form of (32) with

B = CL,

c = a2 - (b, + bz,u2kJ3*

The two stability conditions are (33) and (34). Condition (33)
results in a CT,, T,) locus, similar as before. Condition (34)
is violated when k, crosses zero, which determines a critical
value of Tc given as the solution to

where

C2T; + C,T, + Co = 0 (38)

Co = b,.

Results are presented in Fig. 5, where three distinct regions
of stability are clear. Region I is the region of stability and
in Region II one pair of complex conjugate roots of (32) has
positive real parts with oscillatory vehicle response as seen
earlier. In Region III where Tc is greater than the constant
critical value determined by (38),  one real root of (32) is pos-
itive. In the latter case, the dynamic response of the system
is associated with more complicated bifurcation phenomena,
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Fig. 5 Cross track error guidance: critical value of Tc  versus TG  in absence
of feedforward control
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Fig. 6 Cross track error guidance: simulation results for TG  = 0.8 and two
different values of Tc  m absence of feedforward control
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Fig. 7 Proportional guidance: critical value of Tc  versus d for different values
of TG

as demonstrated by the numerical simulations of Fig. 6 for
which TG = 0.8. When Tc = 0.6, the parameter range is
within Region I and the path deviation converges to zero as
expected. When Tc = 0.8, the parameter range is within Re-
gion III and a pathological convergence to a limit cycle in
the (x, y) plane is observed associated with constant values
of the sway velocity v and turning rate r, and linearly in-
creasing (modulo 2~) heading angle +. These phenomena are
of limited practical significance since they can be easily
avoided by the introduction of k, and can be further ana-
lyzed, if desired, by using techniques similar to the vertical
plane steady-state bifurcations case considered in Papoulias
(1992). Nevertheless, the results demonstrate the impor-
tance on motion stability that the feedforward term k, car-
ries in the control law (11) despite the fact that feedforward
control normally affects only steady-state accuracy.

Proportional guidance

Stability analysis for the proportional guidance scheme
proceeds in a similar fashion. The linearized guidance and
control law is obtained from (22) and is analogous to (30)

6 = kl$ + kg + kg + ko (39)

where

kl = koaz

k2 = k, + 2 kocxZ

k3 = k,

km
kq = - kocxz

d

Substitution of (39) in (27) and (28) produces a linear system
in the form of (31). The characteristic equation of (31) is
written in the same form as (32) where the coeffkients  are
given by

B = -(all  + a& - blu2kz  - bzu2k3

c = (b,a,,  - bza,z)u3k,  + (b,a,, - blazJu3kz

+  (~11~~~ - u12u21)u2  - bzu2kl - blu2k.,

D = (b,a,, - bla&?kl + (blazz  - bzulz - bz)u3ka

E = (bzull - b+zzJu4k,

The stability conditions are the same as (33) and (34). For
a given (T,, TG) combination, there exists a critical value of
d for stability. This is computed from (33) as the solution to

B,(C,D, - &Zl)d2  + [D,(B,C,  + B&J - 2B&E,ld

+ (&CID, - B:EE,  ~ 0:) = 0 (40)

where

B1 = (~1 - blkocx&u

Bz = blkoazh

Assuming that D1 > 0 is satisfied, equation (40) determines
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Fig. 8 Proportional guidance: critical value of Tc  veraw TG for different

values of d

the least required preview distance d for stability. Typical
results in the (d, Tc) parameter plane are shown in Fig. 7
for different values of the guidance time constant TG. Sta-
bility is guaranteed for values of Tc below the critical curve.
It can be seen that for increasing values of TG, proportional
guidance is stable regardless of the value of d provided that
Tc is sufficiently small. For decreasing values of TG, stabil-
ity is guaranteed only for values of d larger than some crit-
ical value so that the guidance dynamics are sufficiently
slowed down.

For a given (T,, d) combination, there exists a critical value
of Tc for stability. This is computed from (33) as the solution
to

(4E’ + D12)T; + 2(2B’E’ - C’D’)T,

+ B’(B’E’ - C’D’) = 0 (41)

where

B’ = b,MP,d - l&u)

C’ = 1 + @ia22  - b,a,,luk,@,u - f&d) - bluk& - bzu2k&

E’ = (b,a,, - blazl)U3k,p2

Assuming that D’ > 0 is satisfied, equation (41) determines
the maximum allowable value of the controller time con-
stant Tc for stability. Typical results in the (T,, Tc) param-
eter plane are shown in Fig. 8 for different values of the
preview distance d. Stability is guaranteed for values of Tc
below the critical curve. It can be seen that, in general, the
region of stability is enlarged for increasing values of T,,
which corresponds to a softer guidance law. The same con-
clusion holds for increasing values of the preview distance
d. Figure 8 demonstrates the advantages that proportional
guidance offers over cross track error guidance. Since two
parameters affect stability, d and TG,  for each value of one
we can select the other so that stability is maintained. As
the value of d approaches zero, the (T,, Tc) stability curve
resembles in shape the critical curve for cross track error
guidance. This means that, in a certain sense, cross track
error guidance can be thought of as a limiting case of pro-
portional guidance for very small values of the preview dis-
tance. Analytically, this can be shown as follows. Substitut-
ing (23) into (22) we can get the commanded turning rate r,

for proportional guidance as a function of the inertial posi-
tion y, its rate of change j, and heading angle IJJ

As d + 0, we have that y/d @ 1, since y << d assuming straight
line stability as t + 00.  By expanding in Taylor series and
keeping the first-order term only we get

r,= -k,,iy-k,,

and substituting k,, k, from (25),

If we substitute the linearized expression for the inertial po-
sition rate jt = u$-assuming  u = 0 as in the case of cross
track error guidance-we get

which has the same form as (17) using the cross track error
guidance gains (20).

3. Bifurcation analysis

In this section we apply bifurcation theory to the study of
dynamic interactions between cross track error and propor-
tional guidance and the turning rate control law. The pur-
pose here is to assess the dynamic response of the vehicle
upon initial loss of stability of straight-line motion and to
explain the numerical simulation results observed in Figs.
3, 4, and 6.

Bifurcations to periodic solutions

The most common loss of stability case is where condition
(33) is violated and (34) is satisfied. The corresponding pa-
rameter values give rise to Poincare-Andronov-Hopf (PAH)
bifurcation points: at precisely these points one pair of com-
plex conjugate eigenvalues of (31) possesses zero real parts.
The most significant result of this PAH bifurcation is the
generation of a family of periodic solutions with continu-
ously increasing amplitude as the parameter value moves
away from its critical value (Guckenheimer & Holmes 1983).
These periodic solutions exist for parameter values where
the nominal equilibrium is either stable or unstable, and they
can be orbitally stable or unstable.

In order to establish direction of PAH bifurcations, and
limit cycle stability, we have to isolate the main nonlinear
terms in the equations of motion (26-29). Due to port/star-
board symmetry, when these equations are expanded in Tay-
lor series, second-order terms vanish identically and the first
remaining nonzero terms are third order. The rudder control
effort 6 appears from (13) to be linear, but in reality it sat-
urates at +Ssat. Since this hard saturation function is non-
analytic we substitute it by a hyperbolic tangent function of
the form

6 = 6,,, tanh
k,u + k,r - kocx2rc

^ (42)
\ ht /

where the saturation limit Ssat  is typically around 0.4 radi-
ans. It should be mentioned that any analytic function with
limits k&t and slope at the origin given by (13) can be used
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in lieu of (42),  the actual choice does not significantly affect
the results that follow.

After performing the above third-order Taylor series ex-
pansion, we write the equations of motion (26-29)  in the
form

x = Ax + g(x) (43)

where A is the linearized system matrix and g(x) contains
the leading nonlinear terms. If T is the matrix of eigenvec-
tors of A evaluated at the PAH bifurcation point, the trans-
formation x = Tz transforms system (431 into its normal co-
ordinate form

i = T-’ ATz + T-i g(Tz) (441

Near the PAH bifurcation point:

r (Y’E -(cog + O’E) 0 0-j

cf’c
T-1

0 0
AT =

0 P 0
0 0 4

where E is the difference between the physical parameter
value (such as Tc, TG, or d) and its critical value, u0 is the
absolute value of the imaginary part of the critical pair of
eigenvalues at the bifurcation point, a’(~‘) is the derivative
of the real (imaginary) part of the critical pair of eigenval-
ues evaluated at E = 0, and p, q are the remaining two neg-
ative eigenvalues of A. In the new system of coordinates z
= T-lx, the dynamics of (44) are governed by a reduced two-
dimensional system zi, z2, since the coordinates zs, zq cor-
respond to the eigenvalues p, q and are asymptotically sta-
ble. Since z3, zq can be expressed in third order, at least,
expressions in terms of zi, z2 (Guckenheimer & Holmes 1983),
they do not affect our Taylor expansions in (44). Therefore,
we can write the system in the critical coordinates zl, z2 in
the form

ii = (Y’ezi - (o. + W’E)ZZ  + r&
2 3

+ r-&z2 + hw2 + r1422 (451

i2 = (w. + ~‘~1.2~ + ores2 + r2&

(46)

where the coefficients rti are computable from the above Taylor
expansions. If we introduce polar coordinates in the form

zi = R cos 0, z2 = R sin 8 (471

and perform averaging over the cyclic coordinate 0 from 0
to 2rr,  equations (45) and (46) result in the following reduced
equation in the radial coordinate R,

Ii = a’& + XR3 (48)

where

71 = k (3rll + r13 + r22 + 3r24)

~0 0.5 1 1.5 2 2.5 3

TG
Fig. 9 Cross track error guidance: cubic coefficient X versus TG  for different

values of a,,,

(b) if X < 0, then stable period solutions coexist with
the unstable equilibrium for E < 0.

We refer to the X > 0 cases as the subcritical, and the YE <
0 cases as the supercritical PAH bifurcations (Guckenhei-
mer & Holmes 1983). In the following section we present
results of this third-order analysis for both cross track error
and proportional guidance schemes.

Results

A plot of the cubic coefficient 3% versus TG for the cross
track error guidance case and for different values of the rud-
der saturation limit asat  is presented in Fig. 9. It can be seen
that for TG < 0.334, K is positive and it becomes negative
for larger Tc values. Therefore, for TG = 0.5 which refers to
the time simulations of Fig. 3, the corresponding PAH bi-
furcations are supercritical and a small-amplitude stable pe-
riodic solution surrounds the unstable nominal equilibrium
as Tc becomes higher than its critical value (35). For TG =
0.25, which refers to the time simulations of Fig. 4, the cor-
responding PAH bifurcations are subcritical since X is pas-
itive. An unstable periodic solution coexists here with the
stable nominal point for Tc less than its critical value. Con-
vergence to the stable equilibrium point is ensured now only
if the initial conditions fall within the unstable limit cycle,
as Fig. 4 demonstrated. As is the case with many PAH bi-
furcations, the above unstable limit cycles change their sta-
bility and direction as the parameter To moves further away
from the bifurcation point. Schematically, the above two cases
are shown in Fig. 10. Solid lines correspond to stable and
dotted lines to unstable nominal equilibrium, while solid
curves correspond to stable and dotted curves to unstable
periodic solutions. Both are viewed in increasing values of
TG and periodic solutions originate as TG reaches its critical
value for a given Tc. The progressive buildup of the ampli-
tude of the periodic solutions for the supercritical case ver-

From equation (48) we can see that:
1. If a’>O,  then

(a) if X > 0, then unstable period solutions coexist with
the stable equilibrium for E < 0, and

(b) if X < 0, then stable period solutions coexist with
the unstable equilibrium for E > 0.

2. If (Y’ < 0, then

SUPER’ZITICAL

Y

SUBCRITICAL

(a) if YC > 0, then unstable period solutions coexist with
the stable equilibrium for E > 0, and

1 -JL_____ i-__LZL

- TG - TG

Fig. 10 Supercritical and subcritical PAH bifurcations
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Fig. 11 Cross track error guidance: simulation results for Tc = 0.9, TG  = Fig. 13 Proportional guidance: cubic coefficient ?X versus TG for different
0.5, and different  values of S,, values of d

sus the sudden amplitude enlargement for the subcritical case
which was observed in Figs. 3 and 4 can be clearly seen,

The effect of the rudder saturation level which does not
affect the linear stability analysis is also evident from Fig.
9. Although transitions between supercritical and subcriti-
cal bifurcations appear to be relatively insensitive to the value
of L,, the value of X becomes less negative as ssat is in-
creased. This means that rudder angle saturation has a sta-
bilizing effect in this problem: upon initial loss of stability
of straight-line motion, the stable limit cycle amplitudes are
decreased for decreasing saturation values Ssat. This result
is in sharp contrast to orientation guidance laws where rud-
der angle saturation was found to induce a significant de-
stabilizing effect (Papoulias 1991). This rudder saturation
stabilizing effect is numerically demonstrated in Fig. 11,
where limit cycles in the b, j) phase subspace  are shown for
Tc = 0.9 and TG = 0.5, and for different rudder saturation
levels ssat in radians.

Similar results in terms of the cubic coefficient X for the
proportional guidance case are presented in Figs. 12 and 13.
Figure 12 shows 3% versus Tc for different values of TG for
the PAH bifurcations of Fig. 7. For supercritical bifurcations

-2.
\

I

-2.5 - I

-3 I
0.6 0.8 1 1.2 1.1 1.6 1.3 2 2.2 2.4

Tc

Fig. 12 Proportional guidance: cubic coefficient X versus Tc  for different
values of TG

to occur (X < 0) it can be seen that the controller time con-
stant Tc must be selected to be higher than a certain critical
value. Figure 13 presents YC versus TG for different values
of d for the PAH bifurcation curves of Fig. 8. Supercritical
bifurcations are ensured provided TG  is larger than a certain
critical value which requires increasingly higher values of
Tc as Fig. 12 suggested as well.

Side slip effects

The cross track error guidance law (17) was based on
equations (15) and (16), which neglected the influence of side
slip velocity u that exists as a result of the commanded turn-
ing rate TV. In order to analyze the potential benefits from
incorporating side slip information on overall motion sta-
bility, we base the guidance law (17) on equation (15) and

j = u sin * + uOrC  cos I)

instead of (16), where

(50)

b bla22 - 2a12
” = b2all - blazl

and v,,F, is the steady-state sway velocity that develops with
the turning rate F,. The closed-loop characteristic equation
of (15), (50), and (17) is

x2 - (k* + uo~JX  - K,U = 0 (51)

and by equating the coefficients of (19) and (51) we get the
guidance gains

jq,= _p,+!!!e,  /$= _&
U u

Typical results are shown in Fig. 14 in terms of the critical
Tc versus TG curve. It can be seen that introduction of ap-
propriate side slip information results in an increase of the
region of motion stability. This effect is more pronounced for
small Tc values where the control law is more responsive
and the amount of side slip is, therefore, larger. The increase
in the region of stability is accompanied by an even more
beneficial limit cycle stability as indicated by Fig. 15. It can
be seen that the cubic coefficient X is more negative when
the side slip correction is active, which results in stronger
supercritical PAH bifurcations with smaller limit cycle am-
plitudes after the initial loss of stability of straight-line mo-
tion.
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Fig. 14 Cross track error guidance: critical value of Tc  versus Te with and
without side slip correction

Concluding remarks

Analysis of the dynamic response of a marine vehicle un-
der coupled operation of turning rate guidance and control
has been presented. Linear full-state feedback control has
been employed for demonstration purposes with a feedfor-
ward term to ensure steady-state accuracy. Two turning rate
guidance schemes were introduced and analyzed: cross track
error and proportional guidance. Linear stability analysis was
performed in order to evaluate regions of stability and in-
stability of straight-line motion, and third-order nonlinear
expansions were utilized in the analysis of Poincare-
Andronov-Hopf bifurcations. The primary conclusions of this
study can be summarized as follows:

1. Loss of stability is possible if the control law is not suf-
ficiently responsive compared to the dynamics of the guid-
ance law. This is true for both cross track error and propor-
tional guidance.

2. For better path-keeping characteristics it is required

0
1

-0.1

-0.2

-0.3  -

K: -0.4

-o.CSS
0.4 0.6 0.B 1 1.2 1.4 I.6 1.8

TG
Fig. 15 Cross track error guidance: cubic coefficient X versus Te with and

without side slip correction

that the guidance law must be as responsive as possible. It
was shown that, asymptotically, any increase in the guid-
ance law responsiveness must be accompanied by double the
increase in the autopilot responsiveness in order to maintain
stability.

3. The feedforward term in the control law has significant
effects on stability in spite of the fact that feedforward con-
trol usually affects only steady-state accuracy. It was shown
that in the absence of the feedforward term additional in-
stabilities are possible, and the domain of stability of straight-
line motion is greatly reduced.

4. Proportional guidance was found to offer additional ad-
vantages on stability compared with cross track error guid-
ance. It was shown that cross track error guidance can be
obtained as the limiting case of proportional guidance as the
preview distance approaches zero.

5. The main cases of loss of stability were identified as
typical PAH bifurcations with the generation of periodic so-
lutions. Third-order Taylor series expansion revealed the
stability of the limit cycles. It was shown that stable limit
cycles would exist for sufficiently slow control laws, while
unstable limit cycles were created as a result of a very re-
sponsive control.

6. A nonlinear stabilizing effect of rudder saturation was
established. This result, which does not affect the linear sta-
bility of the system, is unique to turning rate guidance; pre-
vious studies have revealed that rudder saturation results
in a nonlinear destabilizing effect in the case of orientation
guidance and control.

7. Finally, it was shown that appropriate side slip infor-
mation in the design of the guidance law results in an ap-
preciable enlargement of the region of stability of straight-
line motion.
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